RESEARCH NOTE

Improvement of SO_x-Resistance of Silver Lean-DeNO_x Catalysts by Supporting on CeO₂-Containing Zirconia

N. Hickey,* P. Fornasiero,* J. Kašpar,*^{,1} M. Graziani,* G. Martra,† S. Coluccia,† S. Biella,‡ L. Prati,‡ and M. Rossi‡

*Dipartimento di Scienze Chimiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy; †Dipartimento di Chimica IFM, Università di Torino, Via P. Giuria 7, I-10125 Torino, Italy; and ‡Dipartimento di Chimica Inorganica, Metallorganica e Analitica—Centro CNR, Università di Milano, Via G.Venezian 21, I-20133 Milan, Italy

Received February 2, 2002; revised March 12, 2002; accepted March 12, 2002

The lean-deNO_x activity of Ag/Al₂O₃, Ag/Ce_{0.16}Zr_{0.84}O₂, and Ag/ ZrO₂ was compared. The activity data showed that by supporting Ag on ZrO₂-containing supports, low-temperature deNO_x activity is greatly improved compared to Ag/Al₂O₃. TEM investigation suggested that the support is at the origin of this shift of activity to low temperature rather than in the presence of large Ag particles. More important, use of Ce_{0.16}Zr_{0.84}O₂ and ZrO₂ as supports confers improved sulphur resistance compared to Al₂O₃-based materials in that regeneration of the SO₂-poisoned catalyst may be achieved under moderate conditions. (© 2002 Elsevier Science (USA)

Key Words: deNO_x catalysts; silver catalysts; sulphur poisoning; ceria–zirconia catalysts.

INTRODUCTION

Efficient NO_x abatement from oxygen-rich exhausts, such as those originating from lean-fuelled engines, has become one of the major challenges for environmental catalysis. Literally hundreds of catalysts have been tested (1), with transition-metal-containing zeolites and Pt/Al₂O₃ being among the most effective systems. They, however, respectively suffer from poor hydrothermal stability and a narrow range of activity (200-270°C). Ag-containing catalysts have attracted attention as inexpensive-compared to Pt catalysts—and highly active systems (2-7). However, even these catalysts suffer from some major drawbacks, showing activity only at relatively high temperatures (around 500°C) and high sensitivity to sulphur poisoning, which makes them unsuitable for typical lean $deNO_x$ applications such as in diesel engines. Here, we show the key role of ZrO₂-based supports in modifying the catalytic properties of supported Ag. Both lowtemperature lean-deNO_x activity and the sulphur tolerance of the system are improved compared to that of Ag/Al_2O_3 .

EXPERIMENTS AND METHODS

Ag was supported either by incipient wetness (IW) (using $AgNO_3$) or by depositing a preformed Ag sol (8) (SOL)onto the support (Ag loading, 2 wt%; Ce_{0.16}Zr_{0.84}O₂, 100 m^2 g^{-1} ; ZrO₂, 40 m² g⁻¹; and γ -Al₂O₃, 100 or 180 m² g⁻¹). Samples were calcined at 650°C before reaction. Activity tests were performed using a reaction mixture of 1000 ppm NO, 1000 ppm C_3H_6 , and 5% O_2 (balance He) and, when present, 50 ppm SO₂ and 10% H₂O; the weight/flow rate (W/F) was 0.10–0.025 g s ml⁻¹. Activity profiles were obtained either by increasing the temperature in steps of 25°C and monitoring activity for at least 40 min at each temperature, or by run-up experiments (heating rate, 10° C min⁻¹). Analysis was performed by gas chromatography (C_3H_6 , CO₂, CO, O₂, N₂O, N₂) and a chemiluminescence detector (NO, NO₂). Transmission electron micrographs (TEM) were obtained with a Jeol 2000EX microscope. The samples were ultrasonically dispersed in 2-propanol and deposited on a copper grid covered with a lacey carbon film.

RESULTS AND DISCUSSION

Figure 1 compares NO_x and C₃H₆ conversion curves for Ag/Al₂O₃ (IW, 100; IW, 180) Ag/ZrO₂ (IW, 40), and Ag/Ce_{0.16}Zr_{0.84}O₂ (SOL, 100) as a function of temperature. There is a remarkable difference between Ag/Al₂O₃ and the zirconia-based systems, as the range of temperatures of NO_x conversion is shifted down by about 150°C for the latter catalysts. Similar shifts of activity to low temperatures have previously been reported for an Ag/ZrO₂ catalyst compared to Ag/Al₂O₃ (4) and also for highly loaded Ag/Al₂O₃ (>6 wt%) (2). Such shifts of large Ag

¹ To whom correspondence should be addressed. Fax: +39-040-5583960. E-mail: kaspar@units.it.

Temperature (°C)

300

500

700

metallic particles under reaction conditions, which are selective towards N₂O formation, e.g., 27% of the NO fed was reduced to N₂O at a total NO conversion of 43% over 6 wt% Ag/Al₂O₃ (2). More dispersed oxidised Ag species are active at high temperatures and form almost exclusively N_2 (2). The product distributions obtained over the present Ag/Al₂O₃ samples are comparable to those reported in the literature; for example, less then 1% of N₂O is formed at a NO conversion of 51% over Ag/Al₂O₃ (IW, 180). At T_{max} (Table 1) 9 and 12% N₂O was observed over, respectively, Ag/Ce_{0.16}Zr_{0.84}O₂ and Ag/ZrO₂. With regard to the conversion levels achieved, direct comparison of data obtained in different laboratories is difficult, with space velocity, Ag loading, concentration of reductant, concentration of O₂, and preparation method all reported to be significant factors in the conversions achieved. Rates at 450° \breve{C} of 1.8×10^{-7} mol of NO_{x converted} g⁻¹ s⁻¹ and 3.3×10^{-7} mol of NO_{x converted} g⁻¹ s⁻¹ were measured for Ag/Al₂O₃ (IW, 100) and Ag/Al₂O₃ (IW, 180), respectively. These compare well with the values of $3.1 \times$ 10^{-7} mol of NO_{x converted} g⁻¹ s⁻¹ at 440°C and 2.5 × 10^{-7} mol of NO_{x converted} g⁻¹ s⁻¹ at 450°C for the same reaction under similar reaction conditions, calculated from the data reported in Refs. (4, 2), respectively. The presence of a "plateau" in the C_3H_6 conversion curve for Ag/Al₂O₃ (IW, 100) is an unexpected feature. We believe that this may be attributed to the inhomogeneous Ag particle distribution of this sample (see Table 1). As has been suggested in previous reports (2, 4), the presence of large Ag particles should promote unselective combustion at lower temperatures. As such unselective combustion occurs at the expense of the deNO_x activity, this would also contribute to the difference in deNO_x activities of the two alumina-based materials.

TABLE 1

DeNO_x Activity and Effects of SO₂ Addition to the Feed/H₂ Regeneration on Steady-State DeNO_x Activity at 450°C^a

Sample	Preparation method	BET surface area (m ² g ⁻¹)	Ag particle size (nm)	$DeNO_x$ activity					
				Activity range (°C)	Maximum DeNO _x activity		DeNO _x activity at 450°C (%)		
					T _{max} (°C)	Conv. (%)	SO ₂ -free	$+SO_2$	After H ₂
Ag/Ce _{0.16} Zr _{0.84} O ₂	IW	100	See note ^b	200-600	375	13	_	_	_
	SOL	100	25 ± 5	200-600	350	39	26	6	23
							28^c	15^{c}	28^c
Ag/ZrO ₂	IW	40	4 ± 2.5	250-600	375	36	17	0	22
Ag/Al ₂ O ₃	IW	100	8 ± 4.0^d	325-600	510	35	21	6	9
	IW	180	11 ± 7.5^{e}	325-600	500	51	50^{f}	25^{f}	31^{f}
	SOL	100	13 ± 8^{g}	400-600	540	18	20	6	14

^a Reaction conditions as reported in the text. W/F = 0.05 g s ml⁻¹. H₂ regeneration at 450°C in flow of H₂ (5% in Ar) for 10 min. DeNO_x activity: conversion of NO_x (NO + NO₂). Three other Ag/Ce_{0.16}Zr_{0.84}O₂ and Ag/ZrO₂ catalysts were tested, giving analogous activity results (data not reported).

^b Due to poor contrast with the support no Ag particle could be detected at the various magnifications employed. The presence of Ag was analytically detected by the TEM/EDS technique, which suggests that Ag should be highly dispersed with particles <1 nm, even though the presence of some very large particles undetectable by TEM cannot be discounted.

^c 10% of water was added to the feed.

^d Inhomogeneous particle distribution was observed with a few large particles, at 24–25, 29–31, and 35 nm, accounting for about 60 mass%.

^e Bimodal particle distribution was observed with about 8 mass% of particles both at 21 and at 27 nm.

^f Reaction temperature, 500°C, the temperature of maximum deNO_x activity.

^g Bimodal particle distribution was observed with about 50 mass% of particles at 32 ± 3 nm.

30

20

10

0

(b)

100

80

60

40

20

0 100

In an attempt to clarify the origin of this high activity at low temperatures of the zirconia-based catalysts, a number of different catalysts were tested (Table 1). The differences in preparation were intended to create variations in the Ag particle size. It can be seen that, irrespective of the synthesis method or surface area of the support, the temperatures where the $deNO_x$ activity is observed over the zirconiacontaining materials is always lower by ca. 150°C compared to Ag/Al_2O_3 . It should also be noted that under ramped reaction conditions (10°C min⁻¹), no differences in the activity ranges of Ag/Al₂O₃ (IW, 100) and Ag/Ce_{0.16}Zr_{0.84}O₂. (SOL, 100) were observed upon varying W/F by a factor of four. Attempts to detect the Ag particle size by XRD failed; likewise, the reducible nature of the $Ce_{0.16}Zr_{0.84}O_2$ precluded the use of O₂ or N₂O chemisorption. Therefore, TEM data for selected samples were obtained (Table 1). The particle size distributions measured suggests that the presence of large Ag particles is not the major factor responsible for the observed behaviour of the zirconia-based materials. Rather, an interaction between the support and the Ag particles appears at the origin of the high activity at low temperatures.

Knowledge of the ability to withstand the poisoning effects of sulphur is an important factor in the assessment of any material with potential $deNO_x$ application. Here, the effects of addition of SO₂ to the feed on the deNO_x activity were compared at 450°C, where all the systems show appreciable activity (Fig. 2). All catalysts suffer from a significant deactivation as 50 ppm SO₂ is added to the feed. However, the response of the catalysts to SO₂ poisoning/catalysts regeneration is fundamentally different. A remarkably good recovery of the $deNO_x$ activity could be achieved in the case of zirconia-based materials by exposure to 5% H₂ at 450° C for 10 min at a flow rate of 60 ml min⁻¹ (Fig. 2). Effective catalyst regeneration could be achieved for several deactivation/regeneration cycles. It is very important that even milder regeneration procedures were quite effective: 50–80% of the initial activity of Ag/Ce_{0.16}Zr_{0.84}O₂ could be recovered, for example, by pulsing 1 ml of H_2 over the catalyst, or even by simply removing the SO_2 from the feed at 450°C. In contrast, only limited regeneration of the Ag/Al_2O_3 catalysts could be achieved under the same gas-phase composition and time of reduction for temperatures as high as 600°C. This is also true for the most active Ag/Al_2O_3 (IW, 180), where the effect of SO₂ addition was tested at 500°C, i.e., at the temperature of maximum deNO_x activity. For comparison, a significant degree of regeneration of SO_x -poisoned Ag/Al₂O₃ could be achieved only by employing rather severe conditions (9). The noticeably slow deactivation of Ag/Ce_{0.16}Zr_{0.84}O₂ (SOL, 100)—the activity halves after 140 min-upon SO2 addition deserves some comment: immediately after the addition of SO₂ to the feed, very slow deactivation of the $deNO_x$ activity is observed as long as NO₂ is produced over the catalyst. Once production of NO₂ is totally suppressed, a constant conversion of 22%

FIG. 2. DeNO_x activity at 450°C: (1) activity of the fresh catalysts, (2) effect of SO₂ addition (50 ppm) to the feed on the activity, and (3) activity in the absence of SO₂ after regeneration in H₂ (5% in He for 10 min) over (a) Ag/Al₂O₃ (IW, 100) (b) Ag/Ce_{0.16}Zr_{0.84}O₂ (SOL, 100), and (c) Ag/ ZrO₂ (IW, 40). NO_x, conversion of NO and NO₂ (formed in the reaction) to N₂ and N₂O; NO₂, conversion of NO to NO₂. Less then 4% of NO fed is converted to N₂O on each catalyst. Total NO conversion (not reported) is sum of NO_x and NO₂ conversions. W/F = 0.05 g s ml⁻¹.

is observed for about 20 min; the activity then dropped to 6%. In contrast, over both Ag/ZrO₂ and Ag/Al₂O₃ deactivation due to SO_x poisoning started almost immediately after the SO₂ addition to the feed, with the activity halving, respectively, after 25 and 45 min. Note that differences in BET area of the support cannot account for the different activity decay. Upon regeneration of the poisoned catalysts with H₂ at 450°C, NO₂ formation is irreversibly suppressed in the case of Ag/ZrO₂. No significant amount of NO₂ is observed over Ag/Al₂O₃, due to the fact that the reaction temperature of 450°C is below the region where NO₂ is observed in the gaseous phase over this catalyst.

Experiments carried out also in the presence of water (10%) confirmed this promoting effect of the $Ce_{0.16}Zr_{0.84}O_2$

support on the Ag catalyst and the easy regeneration from SO_x poisoning (Table 1). The addition of water to the feed did not affect the catalyst activity or regeneration characteristics over the time-on-stream investigated (12 h). Finally, preliminary temperature-programmed reduction experiments carried out over the SO₂-poisoned catalysts showed that significantly higher amounts of sulphur-containing species are stored over Ag/Ce_{0.16}Zr_{0.84}O₂ compared to Ag/Al₂O₃. This suggests that the Ce_{0.16}Zr_{0.84}O₂ support may act as a sink for these species, accounting for the improved sulphur resistance.

In summary, it is shown that use of $Ce_{0.16}Zr_{0.84}O_2$ as support strongly modifies the deNO_x activity of the Ag catalysts, the activity range being decreased to lower temperature. A change of Ag particle size does not appear to be a major factor responsible for this observation. However, of more importance is the observation that the sulphur tolerance is improved from the point of view that facile regeneration from SO₂ poisoning can be achieved. While the overall activity of the catalyst investigated is not sufficient to provide a practical solution to the problem, these results may provide new directions for research into lean-deNO_x catalysis, as, for example, it has been demonstrated for Ag/Al₂O₃ that appropriate synthesis may result in improved activity (10).

ACKNOWLEDGMENTS

University of Trieste, Fondo Trieste—1999, and MURST (Roma) "Progetti di Ricerca di Rilevante Interesse Nazionale—2000," Consortium "INCA—Progetto Atmosfera Urbana," are gratefully acknowledged for financial support.

REFERENCES

- 1. Shelef, M., Chem. Rev. 95, 209 (1995).
- 2. Bethke, K. A., and Kung, H. H., J. Catal. 172, 93 (1997).
- Kameoka, S., Ukisu, Y., and Miyadera, T., *Phys. Chem. Chem. Phys.* 2, 367 (2000).
- Meunier, F. C., Ukropec, R., Stapleton, C., and Ross, J. R. H., *Appl. Catal. B* 30, 163 (2001).
- Meunier, F. C., Breen, J. P., Zuzaniuk, V., Olsson M., and Ross, J. R. H., J. Catal. 187, 493 (1999).
- Martens, J. A., Cauvel, A., Francis, A., Hermans, C., Jayat, F., Remy, M., Keung, M., Lievens, J., and Jacobs, P. A., *Angew. Chem. Int. Ed.* 37, 1901 (1998).
- 7. Masuda, K., Tsujimura, K., Shinoda, K., and Kato, T., *Appl. Catal. B* **8**, 33 (1996).
- Porta, F., Prati, L., Rossi, M., Coluccia, S., and Martra, G., *Catal. Today* 61, 165 (2000).
- 9. Meunier, F. C., and Ross, J. R. H., Appl. Catal. B 24, 23 (2000).
- Seker, E., Catvataio, J., Gulari, E., Lorpongpaiboon, P., and Osuwan, S., *Appl. Catal. A* 183, 121 (1999).